

Solar Tracker

Bill Lane*
Department of Electrical and Computer Engineering

Cleveland State University
Cleveland, Ohio 44115

EEC 517
April 30, 2008

* welane3@hotmail.com or wlane@republicengineered.com

 1

Abstract

Solar energy is rapidly gaining notoriety as an important means of expanding renewable
energy resources. As such, it is vital that those in engineering fields understand the
technologies associated with this area. My project will include the design and
construction of a microcontroller-based solar panel tracking system. Solar tracking
allows more energy to be produced because the solar array is able to remain aligned to
the sun. This system builds upon topics learned in this course. A working system will
ultimately be demonstrated to validate the design. Problems and possible improvements
will also be presented.

1. Introduction

Renewable energy solutions are becoming increasingly popular. Photovoltaic (solar)
systems are but one example. Maximizing power output from a solar system is desirable
to increase efficiency. In order to maximize power output from the solar panels, one
needs to keep the panels aligned with the sun. As such, a means of tracking the sun is
required. This is a far more cost effective solution than purchasing additional solar
panels. It has been estimated that the yield from solar panels can be increased by 30 to
60 percent by utilizing a tracking system instead of a stationary array [1]. This project
develops an automatic tracking system which will keep the solar panels aligned with the
sun in order to maximize efficiency.

This paper begins with presenting background theory in light sensors and stepper motors
as they apply to the project. The paper continues with specific design methodologies
pertaining to photocells, stepper motors and drivers, microcontroller selection, voltage
regulation, physical construction, and a software/system operation explanation. The
paper concludes with a discussion of design results and future work.

2. Background Information

This section presents background information on the main subsystems of the project.
Specifically, this section discusses photocell and stepper motor theory in order to provide
a better understanding as to how they relate to the solar tracker.

2.1. Light Sensor Theory

Light sensors are among the most common sensor type. The simplest optical sensor is a
photoresistor which may be a cadmium sulfide (CdS) type or a gallium arsenide (GaAs)
type [2]. The next step up in complexity is the photodiode followed by the
phototransistor [2].

 2

The sun tracker uses a cadmium sulfide (CdS) photocell for light sensing. This is the
least expensive and least complex type of light sensor [2]. The CdS photocell is a passive
component whose resistance in inversely proportional to the amount of light intensity
directed toward it. To utilize the photocell, it is placed in series with a resistor. A
voltage divider is thus formed and the output at the junction is determined by the two
resistances. Figure 1 illustrates the photocell circuit. In this project, it was desired for
the output voltage to increase as the light intensity increases, so the photocell was placed
in the top position.

R2

R1

10 K

2

1

+5 V

Output
Photocell

Figure 1 – CdS Photocell Circuit

2.2. Stepper Motor and Driver Theory

Stepper motors are commonly used for precision positioning control applications. All
stepper motors possess five common characteristics which make them ideal for this
application. Namely, they are brushless, load independent; have open loop positioning
capability, good holding torque, and excellent response characteristics. [3].

There are three types of stepper motors: permanent magnet, variable reluctance, and
hybrid [3]. The arrangement of windings on the stator is the main distinguishing factor
between the three types [3]. Permanent magnet motors may be wound either with
unipolar or bipolar windings [3].

The sun tracker uses a unipolar step motor. As such, discussion will be limited to this
type of stepper motor. Unipolar motors have two windings with each having a center tap
as shown in Figure 2 from [4].

 3

Figure 2 – Unipolar Stepper Motor Coils

The center taps are connected to a positive voltage while the coil ends are alternately
grounded to cause a reversal of the field direction in that winding [3]. Figure 2 shows a
4-phase motor. The number of phases is equal to two times the number of coils. The
motor is rotated by applying power to the windings in a sequence as shown in Figure 3
from [4].

Figure 3 – Standard Drive Sequence Example

The motor may also be half-stepped. Half-stepping is achieved by first energizing one
coil, then two coils, then one coil, etc., in a sequence as shown in Figure 4 from [4]. This
project utilizes half-stepping and is further discussed in Section 3.5.

 4

Figure 4 – Half-Step Drive Sequence Example

Lastly, a control circuit is needed to drive the stepper motor. The basic control circuit for
a unipolar stepper motor is shown in Figure 5 from [3]. The motor driving circuit
specific to this project is explained in Section 3.5.

Figure 5 – Unipolar Motor Control Circuit

3. Project Design Methodology

This section will discuss the methodology involved in the design of the solar tracker. The
project was divided into parts to make the design process modular. The project consists

 5

of reading a series of light sensor values, comparing them, and then positioning a motor
to align with the greatest value which corresponds to the sun’s position. Follow-on
sections discuss hardware and software design considerations.

3.1. Light Sensor Design

As presented in Section 2.1, the sun tracker uses a CdS photocell for light detection. A
complementary resistor value of 10 KΩ was used to construct the circuit shown in Figure
1 in Section 2.1. In this configuration, the output voltage will increase as light intensity
increases.

The complementary resistor value should be chosen such as to achieve the widest output
range possible. Photocell resistance was measured under dark conditions, average light
conditions, and bright light conditions. The results are listed in Table 1.

Measured Resistance Comments
50 KΩ Dark (black vinyl tape placed over cell)
4.35 KΩ Average (normal room lighting level)
200 Ω Bright (flashlight directly in front of cell)

Table 1 – Photocell Resistance Testing Data

The selected 10K complementary resistor resulted in the following minimum and
maximum voltages.

Minimum = 5 V × (10 KΩ / (10 KΩ + 50 KΩ)) = 0.83 V
Maximum = 5 V × (10 KΩ / (10 KΩ + 4.35 KΩ)) = 3.48 V

Thus, an output swing of 2.65 V results. While this is not ideal, it was determined to be
sufficient for the project and additional amplification was not pursued.

3.2. Microcontroller

Since the project’s focus is on embedded software control, the microcontroller is the heart
of the system. The microcontroller selected for this project had to be able to convert the
analog photocell voltage into digital values and also provide four output channels to
control motor rotation. The PIC16F877 was selected as it satisfies these requirements in
addition to already being provided with the class lab kit. Specifically, it possesses the
following three features to satisfy the specific project goals [5].

• 10 bit multi-channel analog-to-digital converter

 6

• 5 input/output ports
• 256 x 8 bytes of data EEPROM memory

A 4 MHz crystal oscillator was also used in conjunction with the PIC16F877 to provide
the necessary clock input. This speed is sufficient for the application. A pin diagram of
the PIC16F877 is provided in Figure 6 from [5].

Figure 6 – PIC16F877 Pinout

3.3. Motor Driver and Stepper Motor

A single unipolar stepper motor was chosen to position the tracking sensor. A stepper
motor was selected because of the precision it offers in positioning applications such as
this. Additionally, complicated drive circuitry is not required with the unipolar type
motor. The motor specifically used in the project was a 5 volt, 7.5 degree-per-step, 4
phase, unipolar motor. It was decided to half-step the motor in order to provide greater
positioning accuracy. This results in 3.75 degrees-per-step. The drive sequence used in
this design is shown in Figure 7.

 7

Index Position Y2 Y1 X2 X1
1 0 1 0 1
2 0 0 0 1
3 1 0 0 1
4 1 0 0 0
5 1 0 1 0
6 0 0 1 0
7 0 1 1 0
8 0 1 0 0

Figure 7 – Actual Half-Step Sequence Utilized

Figure 8 provides a schematic of the motor drive circuit design. This design and
associated motor drive software code was based on course Lab 8. Darlington transistors
were selected to be used for the motor drive circuitry. Each transistor is matched with a
3.3 KΩ resistor to an output that is used to switch the current to the motor winding on
and off. This provides the proper drive sequence to rotate the motor either clockwise or
counterclockwise. The diode connecting the collector to the positive supply voltage
protects the transistor from inductive kickback.

Q1

0

1

2

Q4

0

1

2

+5 V

R4

3.3 K

Q2

0

1

2

From RC0
X1

D2

From RC1

From RC2

Y2

Step Motor

R2

3.3 K

R1

3.3 K

X2

From RC3

Q3

0

1

2

D3

R3

3.3 K

D4

D1

Y1

Figure 8 – Motor Drive Circuit

 8

3.4. Voltage Regulation

The PIC16F877 requires a regulated 5 volt supply voltage. The 7805 voltage regulator
was used to provide for that. The circuit shown in Figure 9 converts an unregulated
supply of 9 volts to 5 volts for use by the microcontroller.

C3

0.1 uF

D1

+5 V
I

1N4003

C2

0.1 uF

C1

47 uF

7805

+9 V
O

GND

Figure 9 – Voltage Regulator Circuit

3.5. Construction

Ultimately the subparts of the project discussed in Sections 3.1 through 3.5 were
consolidated to construct a complete project. Figure 10 provides a block diagram of the
project while Figure 11 provides a complete hardware schematic of the project.

Some additional construction details worth mentioning deal with the motor and photocell.
The motor was mounted to a plastic perforated board using standoffs to provide a stable
base for it. The photocell was mounted on a small balsa wood platform which was
secured to the motor shaft.

Lastly, a reset switch was added to allow for the microcontroller to be reset after it enters
sleep mode.

 9

Figure 10 – Hardware Block Diagram

C1

47 uF 1
MCLR

+9 V

C2

0.1 uF

Q1

0

1

2
31
Vss

X1

7805

11
Vdd

C4 0.1 uF

GND

X2

PIC16F877
1N4003

R5

10 K

Y1

2
AN0

Step Motor

O

Q2

0

1

2

12
Vss

I

D4

Y2

R2

3.3 K

Vdd

C3

0.1 uF

13
CLKIN

Reset Sw. Q3

0

1

2

OUT

D2

15
RC0

NC

Q4

0

1

2

16
RC1

GND

R3

3.3 K

17
RC2

D5

4 MHz XTAL

18
RC3

D1

R4

3.3 K

R1

3.3 K

D3

+5 V

32
Vdd

Figure 11 – Hardware Schematic Diagram

+5 V 10 K

+5 V

PIC16F877

Photocell
Mounted on
Motor Shaft

4 MHz
Oscillator

Motor
Driver
Circuit

Stepper
Motor

MCLR

VDD RC0
 RC1
VSS RC2
 RC3

OSC1

AN0

+5 V

Reset

 10

Table 2 lists the major components utilized in the project.

Item Size or Part No. Qty.
Microchip microcontroller PIC16F877 1 ea.
Oscillator, crystal 4 MHz 1 ea.
Voltage regulator 7805 1 ea.
Photocell Cadmium sulfide 1 ea.
Step motor, unipolar 5 V 1 ea.
Capacitor 0.1 µF 3 ea.
Capacitor 47 µF 1 ea.
Resistor 10 KΩ 1 ea.
Resistor 3.3 KΩ 4 ea.
Diode 1N4003 4 ea.
Transistor, Darlington 2SD1276A 4 ea.
Switch, momentary, pushbutton Normally open 1 ea.
Motor/sensor mounting accessories Various Various

Table 2 – Parts List

3.6. Software/System Operation

As was fundamental to the course, the assembly language was utilized for the project. It
was more than adequate to satisfy design objectives while enhancing level of
understanding of the programming language.

Software operation can be divided into four main parts. The first part is initial
positioning. Prior to powering up the system, the photocell must be manually set to a
starting point (east). Once manually positioned, the tracking sensor will move one 3.75
degree step per second in the clockwise direction until a value of light intensity greater
than the preset threshold is measured. The threshold has been set as a constant in
program code to equal a voltage level of 4.60 volts. This level was selected to
correspond to what was measured with the shielded photocell pointed directly at the sun.
This level ensures that the tracker will seek out only an extremely bright source of light
(i.e. the sun or the flashlight used for testing).

The second part of the system code deals with light tracking. This is the heart of the
program. Once the tracker has set its initial position to a bright source of light (sun), it is
ready to align itself more precisely and continue tracking the light. The tracker first
measures light intensity at its present location. It then moves counterclockwise (left) by
one 3.75 degree step and takes another measurement. Next, it moves clockwise (right)
two 3.75 degree steps and takes a final measurement. The software comparison
subroutines compare these values and position the tracker at the point of greatest
measurement. If any of the values are equal, the tracker will return to the center position
and check again later. The tracker will wait four minutes (four seconds for classroom

 11

demonstration) before checking the three positions again. The four minute interval is
based on the fact that the sun moves one degree every four minutes [6].

Low light detection is the third portion of the software routine. This works in
conjunction with the tracking routine discussed in the previous paragraph. If light
intensity below the low light threshold level, the tracker will keep measuring at whatever
position it is at until the threshold is reached. The threshold for this portion has been
assigned a constant in software equal to 3.70 volts. This level corresponds to what was
measured with the shielded photocell during daytime overcast conditions.

The last portion of the software routine allows the tracker to reset itself at the end of a
day. After every motor movement, a register is incremented or decremented so that the
net position of the tracker can be known at any given time. Once the tracker has moved
180 degrees, light intensity is checked. If light intensity is below the 3.70 volt threshold,
the tracker will return to its starting point and enter sleep mode. If above, it will keep
checking until the measurement drops below the threshold. Once the tracker enters sleep
mode, it can be reset manually with a momentary switch.

Figure 12 outlines the software operation. The entire code listing is provided in the
appendix.

 12

Figure 12 – Software Flow Diagram

Power-up &
Initialize

Initial Measurement

Greater than
Threshold?

Greater than
Threshold?

Greater than
Threshold?

Move Right
One Step and
Increment
Position
Counter

Yes

No

No

No

No

No

Yes

Yes

Yes

No

Yes

End of
Day?

End of
Day?

End of
Day?

Move Right Two
Steps and Increment
Position Counter x 2

Yes

Go to End of
Day Routine

Go to End of
Day Routine

Go to End of
Day Routine

Measure at Center
Position

Move Left One Step
and Decrement
Position Counter

Measure at Left
Position

Continued on Next
Page

 13

Figure 12 (Cont.) – Software Flow Diagram

No

No

No

Check for Equality

Center
Greatest?

Left
Greatest?

Right
Greatest?

Delay 4 Minutes
and Return to
‘Measure at Center
Position’

Equal?

Measure at Right
Position

Greater than
Threshold?

No

Yes

No

Yes

Yes

Yes

Yes

No

No

No

Yes
Move Left One
Step and Decrement
Position Counter

Yes
Move Left Two
Steps and
Decrement Position
Counter x 2

Yes
Remain in Place

End of
Day?

End of
Day?

End of
Day?

Go to End of
Day Routine

Go to End of
Day Routine

Go to End of
Day Routine

Delay 4 Minutes
and Return to
‘Measure at Center
Position’

Delay 4 Minutes
and Return to
‘Measure at Center
Position’

Yes

Move Left One
Step and Decrement
Position Counter

Go to End of
Day Routine

Delay 4 Minutes
and Return to
‘Measure at Center
Position’

End of
Day?

Check for Equality

Continued from
Previous Page

 14

Figure 12 (Cont.) – Software Flow Diagram

4. Design Analysis and Results

Hardware and software portions of the project were separated into stages while
developing the overall system. The portions consisted of light detection, motor driving,
software tracking, and software enhancements. Building and testing smaller sections of
the system made the project more manageable and increased efficiency by decreasing
debugging time.

The project performs the required functions envisioned at the proposal phase. However,
while satisfied with software operation and simulation, less satisfaction was obtained
from two hardware areas. First, there is a potential for problems with motor/photocell
movement due to the photocell wires creating binding issues. There are two wires
attached to the photocell mounted on the motor shaft. Once the tracker has moved
approximately 30 to 45 degrees, the wires place a counter torque on the motor and the
motor slips. This creates positioning error. The present workaround for this is to hold
the photocell wires in a way as to keep them perpendicular to the rear of the photocell as
the tracker moves. This problem will be discussed further in Section 5.

The second issue deals with the photocell. It was discovered that the photocell needs to
be shielded such that light can be directed narrowly to its surface. This was done by
placing a black vinyl tube around the photocell to create a tunnel and help shield it from
light that is not directly in its direct path. This dilemma is discussed further in Section 5.

No

Yes

Measure

Greater
than

Threshold?

Move to Start
Position and
Sleep

End of Day
Routine

 15

5. Future Work

The goals of this project were purposely kept within what was believed to be attainable
within the allotted timeline. As such, many improvements can be made upon this initial
design. That being said, it is felt that this design represents a functioning miniature scale
model which could be replicated to a much larger scale. The following recommendations
are provided as ideas for future expansion of this project:

• Remedy the motor binding problems due to the photosensor leads. This could be
done with some sort of slip ring mechanism, smaller gauge wire, a larger motor with
more torque, or a combination of some or all of these ideas.

• Increase the sensitivity and accuracy of tracking by using a different light sensor. A
phototransistor with an amplification circuit would provide improved resolution and
better tracking accuracy/precision.

• Use a UCN5804 Darlington transistor array to reduce the number of discrete
components used.

• Utilize a dual-axis design versus a single-axis to increase tracking accuracy.

6. Conclusion

This paper has presented a means of controlling a sun tracking array with an embedded
microprocessor system. Specifically, it demonstrates a working software solution for
maximizing solar cell output by positioning a solar array at the point of maximum light
intensity. This project presents a method of searching for and tracking the sun and
resetting itself for a new day. While the project has limitations, particularly in hardware
areas discussed in Section 4 and Section 5, this provides an opportunity for expansion of
the current project in future years.

 16

References

[1] A.K. Saxena and V. Dutta, “A versatile microprocessor based controller for solar
 tracking,” in Proc. IEEE, 1990, pp. 1105 – 1109.

[2] T.A. Papalias and M. Wong, “Making sense of light sensors,”
 http://www.embedded.com, 2006.

[3] R. Condit and D. W. Jones, “Stepping motor fundamentals,” Microchip Inc.
 Publication AN907, pp. 1 – 22, 2004.

[4] S. J. Hamilton, “Sun-tracking solar cell array system,” University of Queensland
 Department of Computer Science and Electrical Engineering, Bachelors Thesis,
 1999.

[5] Microchip Inc., “PIC16F87X Datasheet,” www.microchip.com, 2001.

[6] M. F. Khan and R. L. Ali, “Automatic sun tracking system,” presented at the All
 Pakistan Engineering Conference, Islamabad, Pakistan, 2005.

 17

Appendix: Software Listing

;**
; Term Project.asm
; Bill Lane
;
;
; Solar Tracker
;**

 list p=16f877
 include "p16f877.inc"
 __CONFIG _CP_OFF & _CPD_OFF & _LVP_OFF & _WDT_OFF &
_BODEN_OFF & _PWRTE_OFF & _XT_OSC

;**Initial assignments**

 cblock 0x20
 Direction ;Motor direction register (left or right)
 Position0 ;Center reference position register
 Position1 ;Left reference position register
 Position2 ;Right reference position register
 Time1 ;Timer register for 1 msec delay function
 Time2 ;Timer register for 250 msec delay function
 Time3 ;Timer register for 1 sec delay function
 Time4 ;Timer register for 1 min delay function
 PositionCount ;Register to store net value of steps taken
 Temp ;Register for return to east decrement position loop
 endc

Left equ d'2' ;Left direction = 2
Right equ d'1' ;Right direction = 1
Index1 equ b'0101' ;Step index position 1
Index2 equ b'0001' ;Step index position 2
Index3 equ b'1001' ;Step index position 3
Index4 equ b'1000' ;Step index position 4
Index5 equ b'1010' ;Step index position 5
Index6 equ b'0010' ;Step index position 6
Index7 equ b'0110' ;Step index position 7
Index8 equ b'0100' ;Step index position 8
Threshold1 equ b'10111101' ;Threshold level for minimum light detection
Threshold2 equ b'11101011’ ;Threshold level for light search subroutine

 org 0x000 ;Reset vector
 nop

;**Initial setup**

Initial
 banksel PORTC ;Select Bank 0

 18

 clrf PORTC ;Clear PORTC
 movlw B'01000001' ;Configure ADCON0
 movwf ADCON0 ;ADCO0 = Fosc/8, Ch0, AD converter on
 banksel OPTION_REG ;Select Bank 1
 movlw B'10000110' ;Configure OPTION_REG
 movwf OPTION_REG ;TMR0 prescaler = 1:128
 clrf TRISC ;Set PORTC as all outputs
 movlw B'00000110' ;Configure ADCON1
 movwf ADCON1
 banksel PORTC ;Select Bank 0
 movlw Index1 ;Set initial step motor position at index position
 movwf PORTC
 clrf PositionCount ;Zero out position

;**Search for brightest point (find sun) following initial startup**

Search
 btfss INTCON,T0IF ;Checks if Timer0 interrupt flag is set
 goto Search ;Loops until set
 bcf INTCON,T0IF ;Clears Timer0 interrupt flag
 bsf ADCON0,GO ;Sets GO bit in ADCON0 to start ADC
Wait2
 btfss PIR1,ADIF ;Checks if AD interrupt flag is set
 goto Wait2 ;Loops until conversion is complete
 bcf PIR1,ADIF ;Clears AD interrupt flag
 movlw Threshold2 ;Moves minimum brightness value to W for comparison
 subwf ADRESH,W
 btfsc STATUS,C ;See if value in ADRESH is greater than threshold value
 goto Main ;If ADRESH > min threshold, continue to main routine
 movlw Right ;If ADRESH < min value, move motor right
 movwf Direction
 call StepControl
 incf PositionCount,1 ;Increment position count for right movement
 call PositionCountCheck ;Check location to see if at end of day
 goto Search ;Keep looking for brightest point (sun)

Delay
 ;call Delay1s ;4 sec delay for class demo
 ;call Delay1s
 ;call Delay1s
 ;call Delay1s
 call Delay1m ;4 minute delay for actual implementation
 call Delay1m
 call Delay1m
 call Delay1m

;**Main move/measure/compare routine**

Main
 call ADCStart ;Call ADC to get measurement at center position
 movf ADRESH,W

 19

 movwf Position0 ;Store center position measurement
 movlw Left ;Move motor left 1 step
 movwf Direction
 call StepControl
 decf PositionCount,1 ;Decrement position count for left movement
 call PositionCountCheck ;Check location to see if at end of day

 call ADCStart ;Call ADC subroutine to get measurement at left position
 movf ADRESH,W
 movwf Position1 ;Store left position measurement
 movlw Right ;Move motor right 2 steps
 movwf Direction
 call StepControl
 incf PositionCount,1 ;Increment position count for right movement
 call PositionCountCheck ;Check location to see if at end of day
 movlw Right
 movwf Direction
 call StepControl
 incf PositionCount,1 ;Increment position count for right movement
 call PositionCountCheck ;Check location to see if at end of day

 call ADCStart ;Call ADC to get measurement at right position
 movf ADRESH,W
 movwf Position2 ;Store right position measurement

 movf Position0,W ;Check if center and left positions are equal
 subwf Position1,W
 btfsc STATUS,Z
 goto ReturnToPosition0 ;If equal, return to center position

 movf Position0,W ;Check if center and right positions are equal
 subwf Position2,W
 btfsc STATUS,Z
 goto ReturnToPosition0 ;If equal, return to center position

 movf Position1,W ;Check if left and right positions are equal
 subwf Position2,W
 btfsc STATUS,Z
 goto ReturnToPosition0 ;If equal, return to center position

 movf Position1,W ;Check if center position is greater than left position
 subwf Position0,W
 btfsc STATUS,C
 goto NextCheck ;If center is greater than left, compare to right position
 goto NextMajorCheck ;If center is less than left, check left position vs. others

NextCheck
 movf Position2,W ;Check if center position is greater than right position
 subwf Position0,W
 btfsc STATUS,C
 goto ReturnToPosition0 ;If center position is greatest, return to center position

 20

 goto NextMajorCheck ;If center position is not greatest, check left vs. others

ReturnToPosition0
 movlw Left ;Moves motor one step left to center if center is greatest
 movwf Direction
 call StepControl
 decf PositionCount,1 ;Decrement position count for left movement
 call PositionCountCheck ;Check location to see if at end of day
 goto Delay

NextMajorCheck
 movf Position0,W ;Check if left position is greater than center position
 subwf Position1,W
 btfsc STATUS,C
 goto NextCheck2 ;If left position is greatest, compare to right position
 goto NextMajorCheck2 ;If left is less than center, check right position vs. others

NextCheck2
 movf Position2,W ;Check if left position is greater than right position
 subwf Position1,W
 btfsc STATUS,C
 goto ReturnToPosition1 ;If left position is greatest, return to left position
 goto NextMajorCheck2 ;If center in not greatest, check right position vs. others

ReturnToPosition1
 movlw Left ;Moves motor two steps left to left if left is the greatest
 movwf Direction
 call StepControl
 decf PositionCount,1 ;Decrement position count for left movement
 call PositionCountCheck ;Check location to see if at end of day
 movlw Left
 movwf Direction
 call StepControl
 decf PositionCount,1 ;Decrement position count for left movement
 call PositionCountCheck ;Check location to see if at end of day
 goto Delay

NextMajorCheck2
 movf Position0,W ;Check if right position is greater than center position
 subwf Position2,W
 btfsc STATUS,C
 goto NextCheck3 ;If right position is greatest, compare to left position
 goto ReturnToPosition0 ;If right is less than center, return to center position

NextCheck3
 movf Position1,W ;Check if right position is greater than left position
 subwf Position2,W
 btfsc STATUS,C
 goto DoNothing ;If right position is greatest, remain in place
 goto Delay ;If not, start over

 21

DoNothing
 goto Delay

;**Step motor control**

ADCStart
 btfss INTCON,T0IF ;Checks if Timer0 interrupt flag is set
 goto ADCStart ;Loops until set
 bcf INTCON,T0IF ;Clears Timer0 interrupt flag
 bsf ADCON0,GO ;Sets GO bit in ADCON0 to start ADC
Wait
 btfss PIR1,ADIF ;Checks if AD interrupt flag is set
 goto Wait ;Loops until conversion is complete
 bcf PIR1,ADIF ;Clears AD interrupt flag
 movlw Threshold1 ;Moves min light intensity value to W for comparison
 subwf ADRESH,W
 btfsc STATUS,C ;See if value in ADRESH is greater than threshold value
 return ;If ADRESH > min threshold, continue w/ main routine
 goto ADCStart ;If ADRESH < min value, keep checking

StepControl
 call Delay1s ;Delay between step movements
 movf Direction,W ;Find out direction to move
 movf PORTC,W ;Read PORTC
 sublw Index1 ;Compare PORTC to index position
 btfss STATUS,Z ;If no match, check another against another position
 goto StepControl2
 movf Direction,W ;Find out direction to move
 sublw Right ;See if right is the direction called for
 btfsc STATUS,Z ;If right, proceed to next position in the right direction
 goto StepControl1
 movlw Index2 ;If not right, proceed to next position in the left direction
 goto MoveMotor

StepControl1
 movlw Index8 ;Next index position in the right direction
 goto MoveMotor

StepControl2
 movf PORTC,W ;Read PORTC
 sublw Index8 ;Compare PORTC to index position
 btfss STATUS,Z ;If no match, check another against another position
 goto StepControl4
 movf Direction,W ;Find out direction to move
 sublw Right ;See if right is the direction called for
 btfsc STATUS,Z ;If right, proceed to next position in the right direction
 goto StepControl3
 movlw Index1 ;If not right, proceed to next position in the left direction
 goto MoveMotor

StepControl3

 22

 movlw Index7
 goto MoveMotor ;Next index position in the right direction

StepControl4
 movf PORTC,W ;Read PORTC
 sublw Index7 ;Compare PORTC to index position
 btfss STATUS,Z ;If no match, check another against another position
 goto StepControl6
 movf Direction,W ;Find out direction to move
 sublw Right ;See if right is the direction called for
 btfsc STATUS,Z ;If right, proceed to next position in the right direction
 goto StepControl5
 movlw Index8 ;If not right, proceed to next position in the left direction
 goto MoveMotor

StepControl5
 movlw Index6 ;Next index position in the right direction
 goto MoveMotor

StepControl6
 movf PORTC,W ;Read PORTC
 sublw Index6 ;Compare PORTC to index position
 btfss STATUS,Z ;If no match, check another against another position
 goto StepControl8
 movf Direction,W ;Find out direction to move
 sublw Right ;See if right is the direction called for
 btfsc STATUS,Z ;If right, proceed to next position in the right direction
 goto StepControl7
 movlw Index7 ;If not right, proceed to next position in the left direction
 goto MoveMotor

StepControl7
 movlw Index5 ;Next index position in the right direction
 goto MoveMotor

StepControl8
 movf PORTC,W ;Read PORTC
 sublw Index5 ;Compare PORTC to index position
 btfss STATUS,Z ;If no match, check another against another position
 goto StepControl10
 movf Direction,W ;Find out direction to move
 sublw Right ;See if right is the direction called for
 btfsc STATUS,Z ;If right, proceed to next position in the right direction
 goto StepControl9
 movlw Index6 ;If not right, proceed to next position in the left direction
 goto MoveMotor

StepControl9
 movlw Index4 ;Next index position in the right direction
 goto MoveMotor

 23

StepControl10
 movf PORTC,W ;Read PORTC
 sublw Index4 ;Compare PORTC to index position
 btfss STATUS,Z ;If no match, check another against another position
 goto StepControl12
 movf Direction,W ;Find out direction to move
 sublw Right ;See if right is the direction called for
 btfsc STATUS,Z ;If right, proceed to next position in the right direction
 goto StepControl11
 movlw Index5 ;If not right, proceed to next position in the left direction
 goto MoveMotor

StepControl11
 movlw Index3 ;Next index position in the right direction
 goto MoveMotor

StepControl12
 movf PORTC,W ;Read PORTC
 sublw Index3 ;Compare PORTC to index position
 btfss STATUS,Z ;If no match, check another against another position
 goto StepControl14
 movf Direction,W ;Find out direction to move
 sublw Right ;See if right is the direction called for
 btfsc STATUS,Z ;If right, proceed to next position in the right direction
 goto StepControl13
 movlw Index4 ;If not right, proceed to next position in the left direction
 goto MoveMotor

StepControl13
 movlw Index2 ;Next index position in the right direction
 goto MoveMotor

StepControl14
 movf PORTC,W ;Read PORTC
 sublw Index2 ;Compare PORTC to index position
 btfss STATUS,Z ;If no match, check another against another position
 goto StepControl16
 movf Direction,W ;Find out direction to move
 sublw Right ;See if right is the direction called for
 btfsc STATUS,Z ;If right, proceed to next position in the right direction
 goto StepControl15
 movlw Index3 ;If not right, proceed to next position in the left direction
 goto MoveMotor

StepControl15
 movlw Index1 ;Next index position in the right direction
 goto MoveMotor

StepControl16 ;Otherwise return to index position 1
 movlw Index1

 24

MoveMotor
 movwf PORTC ;Move motor to desired index position
 return

;**End of day checking/reset/sleep routine**

PositionCountCheck
 movf PositionCount,W
 sublw d'48'

btfsc STATUS,Z ;If equal to 48, go to end of day brightness check,
otherwise, see if equal to 208

 goto EndOfDayBrightCheck
 movf PositionCount,W
 sublw d'208'
 btfsc STATUS,Z ;If equal to 208, go to end of day brightness check,

otherwise, return to main routine
 goto EndOfDayBrightCheck
 return
EndOfDayBrightCheck
 btfss INTCON,T0IF ;Checks if Timer0 interrupt flag is set
 goto EndOfDayBrightCheck ;Loops until set
 bcf INTCON,T0IF ;Clears Timer0 interrupt flag
 bsf ADCON0,GO ;Sets GO bit in ADCON0 to start ADC
Wait3
 btfss PIR1,ADIF ;Checks if AD interrupt flag is set
 goto Wait3 ;Loops until conversion is complete
 bcf PIR1,ADIF ;Clears AD interrupt flag
 movlw Threshold1 ;Moves minimum light intensity value to W for

comparison w/ ADRESH
 subwf ADRESH,W
 btfsc STATUS,C ;See if value in ADRESH is greater than threshold value
 goto EndOfDayBrightCheck ;If ADRESH > minimum threshold, continue checking
 call ReturnToEast ;Otherwise, return to east and go to sleep
 sleep
 goto Initial
ReturnToEast
 movlw d'48' ;Repeat 48 times to return motor to start (east)
 movwf Temp
Loop
 movlw Left ;Move motor left 1 step
 movwf Direction
 call StepControl
 decfsz Temp,F
 goto Loop
 return

;**Delay routines**

Delay1ms
 movlw d'250' ;1 msec delay
 movwf Time1

 25

Loop1
 nop
 decfsz Time1,F
 goto Loop1
 return

Delay250ms ;250 msec delay
 movlw d'250'
 movwf Time2
Loop2
 call Delay1ms
 decfsz Time2,F
 goto Loop2
 return

Delay1s ;1 sec delay
 movlw d'4'
 movwf Time3
Loop3
 call Delay250ms
 decfsz Time3,F
 goto Loop3
 return

Delay1m ;1 min delay
 movlw d'240'
 movwf Time4
Loop4
 call Delay250ms
 decfsz Time4,F
 goto Loop4
 return

 end

